Graphics Basics
Notes on computer graphics basics
Notes on computer graphics basics
Notes on computer probability and random variables.
Notes on reproducing kernel hilbert spaces and applications in machine learning
Notes on statistical pattern recognition and machine learning foundations.
A High Performance Deep Learning Package
D. Nichols, N.-S. Tomov, F. Betancourt, S. Tomov, K. Wong, en J. Dongarra, "MagmaDNN: Towards High-Performance Data Analytics and Machine Learning for Data-Driven Scientific Computing", ISC. 2019.
Daniel Nichols, Kwai Wong, Stan Tomov, Lucien Ng, Sihan Chen, and Alex Gessinger. 2019. MagmaDNN: Accelerated Deep Learning Using MAGMA. In Proceedings of the Practice and Experience in Advanced Research Computing on Rise of the Machines (learning) (PEARC 19). ACM, New York, NY, USA, Article 71, 6 pages. DOI: https://doi.org/10.1145/3332186.3333047
Frank Betancourt, Kwai Wong, Efosa Asemota, Quindell Marshall, Daniel Nichols, and Stanimire Tomov. 2019. openDIEL: A Parallel Workflow Engine and Data Analytics Framework. In Proceedings of the Practice and Experience in Advanced Research Computing on Rise of the Machines (learning) (PEARC 19). ACM, New York, NY, USA, Article 20, 7 pages. DOI: https://doi.org/10.1145/3332186.3333051
R. Archibald, E. Chow, E. D’Azevedo, J. Dongarra, M. Eisenbach, R. Febbo, F. Lopez, D. Nichols, S. Tomov, K. Wong, and J. Yin, SMC 2020, (2020)
D. Nichols, A. Marathe, K. Shoga, T. Gamblin, A. Bhatele, “Resource Utilization Aware Job Scheduling to Mitigate Performance Variability”, International Parallel & Distributed Processing Symposium (IPDPS). 2022.
D. Nichols, S. Singh, S.-H. Lin, en A. Bhatele, “A Survey and Empirical Evaluation of Parallel Deep Learning Frameworks”, arXiv [cs.LG]. 2022.
Course, University of Tennessee, Department of Computer Science, 2019
Teaching assistant for Computer Science 140: Data Structures and Algorithms I.