Completed PhD at UMD
Published:
Wrapped up my PhD at the University of Maryland.
Published:
Wrapped up my PhD at the University of Maryland.
Published:
I’ll be at ISC in Hamburg. Come say hi!
Published:
Beginning as a postdoc at LLNL
Published:
Not career related, but got married!
Published:
I’ll be at ICPP in San Diego. Come say hi!
Published:
New preprint on using reasoning models to optimize GPU kernels.
Published:
New preprint on automating Spack package generation with agents.
Published:
Come say hi at SC in St. Louis!
Notes on computer graphics basics
Notes on computer probability and random variables.
Notes on reproducing kernel hilbert spaces and applications in machine learning
Notes on statistical pattern recognition and machine learning foundations.
D. Nichols, N.-S. Tomov, F. Betancourt, S. Tomov, K. Wong, en J. Dongarra. ISC. 2019.
D. Nichols, K. Wong, S. Tomov, L. Ng, S. Chen, and A. Gessinger. PEARC. 2019.
F. Betancourt, K. Wong, E. Asemota, Q. Marshall, D. Nichols, and S. Tomov. PEARC. 2019.
R. Archibald, E. Chow, E. D’Azevedo, J. Dongarra, M. Eisenbach, R. Febbo, F. Lopez, D. Nichols, S. Tomov, K. Wong, and J. Yin. SMC. 2020.
D. Nichols, A. Marathe, K. Shoga, T. Gamblin, A. Bhatele. IPDPS. 2022.
D. Nichols, S. Singh, S.-H. Lin, A. Bhatele. arXiv [cs.LG]. 2022.
J. H. Davis, J. Shafner, D. Nichols, N. Grube, P. Martin, A. Bhatele. IPDPS. 2023.
D. Nichols, A. Movsesyan, J-S Yeom, D. Milroy, T. Patki, A. Sarkar, A. Bhatele. Predicting Cross-Architecture Performance of Parallel Programs. IPDPS 2024.
O. Cankur, A. Tomar, D. Nichols, C. Scully-Allison, K. E. Isaacs, A. Bhatele. Automated Programmatic Performance Analysis of Parallel Programs. arXiv. 2401.13150. 2024.
H. Menon∗, D. Nichols∗, A. Bhatele, T. Gamblin. Learning to Predict and Improve Build Successes in Package Ecosystems. MSR 2024. * Authors contributed equally.
D. Nichols, P. Polasam, H. Menon, A. Marathe, T. Gamblin, A. Bhatele. Performance-Aligned LLMs for Generating Fast Code. arXiv. cs.DC. 2404.18864. 2024.
D. Nichols, A. Marathe, H. Menon, T. Gamblin, A. Bhatele. ISC 2024.
D. Nichols, J. H. Davis, Z. Xie, A. Rajaram, A. Bhatele. Can Large Language Models Write Parallel Code?. HPDC 2024.
A. Dey, A. Dhakal, T. Islam, JS. Yeom, T. Patki, D. Nichols, A. Movsesyan, A. Bhatele. Relative Performance Prediction Using Few-Shot Learning. COMPSAC 2024.
D. Nichols, H. Menon, T. Gamblin, A. Bhatele. A Probabilistic Approach To Selecting Build Configurations in Package Managers. SC 2024.
S. Pyda, D. Nichols, A. Bhatele. The Shortcomings of Code LLMs in Modeling Code Properties. LLM4Code 2025.
A. R. Dhakal, T. Z. Islam, A. Dey, T. Patki, D. Nichols, A. Bhatele, J.-S. Yeom. xAMM: "Attention" to Details Improve Cross-Platform Prediction Accuracy. CCGrid 2025.
K. Teranishi, H. Menon, W. F Godoy, P. Balaprakash, D. Bau, T. Ben-Nun, A. Bhatele, F. Franchetti, M. Franusich, T. Gamblin, G. Georgakoudis, T. Goldstein, A. Guha, S. Hahn, C. Iancu, Z. Jin, T. Jones, T. Meng Low, H. Mankad, N. Rao Miniskar, M. Alaul Haque Monil, D. Nichols, K. Parasyris, S. Pophale, P. Valero-Lara, J. S. Vetter, S. Williams, A. Young. Leveraging AI for Productive and Trustworthy HPC Software: Challenges and Research Directions. LLM4HPC 2025.
A. Chaturvedi*, D. Nichols*, S. Singh, A. Bhatele. HPC-Coder-V2: Studying Code LLMs Across Low-Resource Parallel Languages. ISC 2025.
D. Nichols, K. Parasyris, H. Menon, B. R. Bartoldson, G. Georgakoudis, T. Ben-Nun, A. Bhatele. Modeling Code: Is Text All You Need? arXiv. 2507.11467. 2025.
J. H. Davis, D. Nichols, I. Khillan, A. Bhatele. ParEval-Repo: A Benchmark Suite for Evaluating LLMs with Repository-level HPC Translation Tasks. ICPP 2025.
D. Nichols, K. Parasyris, C. Jekel, A. Bhatele, H. Menon. Integrating Performance Tools in Model Reasoning for GPU Kernel Optimization. arXiv. 2510.17158. 2025.
C. Melone, D. Nichols, K. Parasyris, T. Gamblin, H. Menon. LLMs as Packagers of HPC Software. arXiv. 2511.05626. 2025.
A VSCode extension for interacting with HPC workload managers.
A VSCode extension for viewing performance profiles
A website for viewing and analyzing CS publication data
A High Performance Deep Learning Package
Course, University of Tennessee, Department of Computer Science, 2019
Teaching assistant for Computer Science 140: Data Structures and Algorithms I.