A Survey and Empirical Evaluation of Parallel Deep Learning Frameworks
D. Nichols, S. Singh, S.-H. Lin, en A. Bhatele, “A Survey and Empirical Evaluation of Parallel Deep Learning Frameworks”, arXiv [cs.LG]. 2022.
D. Nichols, S. Singh, S.-H. Lin, en A. Bhatele, “A Survey and Empirical Evaluation of Parallel Deep Learning Frameworks”, arXiv [cs.LG]. 2022.
D. Nichols, A. Marathe, K. Shoga, T. Gamblin, A. Bhatele, “Resource Utilization Aware Job Scheduling to Mitigate Performance Variability”, International Parallel & Distributed Processing Symposium (IPDPS). 2022.
R. Archibald, E. Chow, E. D’Azevedo, J. Dongarra, M. Eisenbach, R. Febbo, F. Lopez, D. Nichols, S. Tomov, K. Wong, and J. Yin, SMC 2020, (2020)
Frank Betancourt, Kwai Wong, Efosa Asemota, Quindell Marshall, Daniel Nichols, and Stanimire Tomov. 2019. openDIEL: A Parallel Workflow Engine and Data Analytics Framework. In Proceedings of the Practice and Experience in Advanced Research Computing on Rise of the Machines (learning) (PEARC 19). ACM, New York, NY, USA, Article 20, 7 pages. DOI: https://doi.org/10.1145/3332186.3333051
Daniel Nichols, Kwai Wong, Stan Tomov, Lucien Ng, Sihan Chen, and Alex Gessinger. 2019. MagmaDNN: Accelerated Deep Learning Using MAGMA. In Proceedings of the Practice and Experience in Advanced Research Computing on Rise of the Machines (learning) (PEARC 19). ACM, New York, NY, USA, Article 71, 6 pages. DOI: https://doi.org/10.1145/3332186.3333047
D. Nichols, N.-S. Tomov, F. Betancourt, S. Tomov, K. Wong, en J. Dongarra, "MagmaDNN: Towards High-Performance Data Analytics and Machine Learning for Data-Driven Scientific Computing", ISC. 2019.