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1 Probability Space

Definition 1.1. (Sample Space). The sample space Ω of an experiment is the
set of all possible outcomes.

Definition 1.2. (Event). Given a sample space Ω we say that A is an event in
Ω if A ⊆ Ω.

Definition 1.3. (Event Space). An event space F over Ω is a set of events in
Ω satisfying the following four properties,

1. Ω ∈ F

2. A ∈ F =⇒ (Ω \A) ∈ F

3. Ai ∈ F =⇒
⋃
iAi ∈ F

4. Ai ∈ F =⇒
⋂
iAi ∈ F

Since Ω ∈ F , then we must also have ∅ ∈ F . Typically we define F = 2Ω.

Definition 1.4. (Probability Measure). Given a sample space Ω and an event
space F over Ω, a probability measure P(·) is a function P : F → R+ with the
following two properties,

1. P(Ω) = 1

2. Ai ∩Aj = ∅ (s.t. i 6= j) =⇒ P (
⋃
iAi) =

∑
i P(Ai)

Definition 1.5. (Disjoint Events). Mutually exclusive events,

i 6= j =⇒ Ai ∪Aj = ∅.

Definition 1.6. (Probability Space). A probability space is a truple (Ω,F ,P(·))
where Ω is a sample space, F is an event space over Ω, and P(·) is a probability
measure.
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2 Counting

Definition 2.1. (Permutations). The number of permutations of an unordered
list of n elements {a0, a1, . . . , an} is defined as Pn where

Pn = n!

Definition 2.2. (Permute k from n with repetitions). The number of ways to
choose k elements from a set of n elements where repetitions are allowed and
order matters is defined as P

n

k where

P
n

k = nk.

Definition 2.3. (Permute k from n with no repetitions). The number of ways
to choose k elements from a set of n elements where repetitions are not allowed
and order matters is defined as Pnk where

Pnk =
n!

(n− k)!
.

Definition 2.4. (Choose k from n with no repetitions). The number of ways
to choose k elements from a set of n elements where repetitions are not allowed
and order does not matter is defined as Cnk where

Cnk =

(
n

k

)
=
Pnk
k!

=
n!

k!(n− k)!
.

Definition 2.5. (Choose k from n with repetitions). The number of ways to
choose k elements from a set of n elements where repetitions are allowed and
order does not matter is defined as C

n

k where

C
n

k = Ck+n−1
k =

(
k + n− 1

k

)
.

3 Conditional Probability

Definition 3.1. (Conditional Probability). For a probability space (Ω,F ,P(·))
and two events A and B such that P(B) 6= 0 we define the conditional probability
of the event A given event B as

P(A|B) =
P(A ∩B)

P(B)

Definition 3.2. (Independent Events). In a probability space (Ω,F ,P(·))the
events A1, . . . , An are jointly independent if

P

(⋂
i

Ai

)
=
∏
i

P(Ai).
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Definition 3.3. (Conditional Probability of Independent Events). If events A
and B are independent, then

P(A|B) = P(A)

P(B|A) = P(B).

Definition 3.4. (Law of Total Probability). Let A and B1, . . . , Bn be events in
the probability space (Ω,F ,P(·)). Assume that P(Bi) > 0 (∀i ∈ N), Bi∩Bj (∀i 6=
j), and

⋃
iBi = Ω. This implies

P(A) =
∑
i

P(A|Bi)P(Bi).

Definition 3.5. (Bayes’ Theorem). Let A and B be two events in a probability
space (Ω,F ,P(·)). Then it follows that

P(A|B) = P(B|A)
P(A)

P(B)
.

4 Random Variables

Definition 4.1. (Random Variable). In a probability space (Ω,F ,P(·)), a ran-
dom variable X is a function from the sample space Ω to a domain D, i.e.
X : Ω→ D. If D = R, then we say X is a continuous random variable. Other-
wise, if D ⊂ R, then we X is a discrete random variable.

Definition 4.2. (Probability Cumulative Function). Given a random variable
X we define its Probability Cumulative Function FX : R→ D as

FX(x) := P(X ≤ x).

The PCF of a random variable is a monotonic increasing function.

Definition 4.3. (PCF Over an Interval). For a random variable X and an
interval (a, b], we have

P(a < X ≤ b) = FX(b)− FX(a).

Definition 4.4. (Probability Mass Function). The Probability Mass Function
of a discrete random variable X with PCF FX(x) is given by P(X = x) such
that ∑

x∈D
P(X = x) = 1.

Definition 4.5. (Probability Density Function). The Probability Density Func-
tion of a random variable X with PCF FX(x) is given by the function fx : R→
R+ such that

fx(x) =
d

dx
FX(x).
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The PDF has two key properties, (1) non-negativity and (2) normalization.

1. fX(x) ≥ 0 ∀x ∈ R

2.
∫
R fX(x) dx = 1

We can also use the properties of PMF’s and the fundamental theorem of cal-
culus to write,

P(a < X ≤ b) =

∫ b

a

fX(x) dx.

5 Expectation

Definition 5.1. (Expectation of a Discrete Random Variable). Given a discrete
random variable X with domain D and a function ϕ : D → D, we define the
expectation of ϕ(X) as

E[ϕ(X)] :=
∑
x∈D

ϕ(x)P(X = x).

Definition 5.2. (Expectation of a Continuous Random Variable). Given a
continuous random variable X with PDF fX and a function ϕ : R → R we
define the expectation of ϕ(X) as

E[ϕ(X)] :=

∫
R
ϕ(x)fX(x) dx.

Expectation has some nice properties we can use,

E[ϕ1(X1) + ϕ2(X2)] = E[ϕ1(X1)] + E[ϕ2(X2)]

E[αϕ(X)] = αE[ϕ(X)] (∀α ∈ R).

Definition 5.3. (Moments). Given a random variable X we define its k-th
moment as E[Xk], for k ∈ N.

Definition 5.4. (Mean). Given a random variable X its mean, µX , is defined
as its first moment, namely

µX := E[X].

Definition 5.5. (Central Moment). Given a random variable X and k ∈ N we
define its k-th central moment as

E[(X − µX)k].

Definition 5.6. (Variance). Given a random variable X its variance, σ2
X , is

defined as the 2nd central moment. Namely,

σ2
X = E[(X − µX)2] = E[X2]− E[X]2.
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Definition 5.7. (Markov Inequality). Given a random variable X such that
P(X < 0) = 0, then we have

P(X ≥ k) ≤ E[X]

k
(∀k > 0).

Definition 5.8. (Chebyshev Inequality). Given a random variable X with
E[X] = µX and variance σ2

X , then we have

P(|X − µX | ≥ kσX) ≤ 1

k2
(∀k > 0).

6 Distributions

Definition 6.1. (Uniform Distribution). if X ∼ U(a, b) then X takes values
uniformly on [a, b] and

P(X = x) =

{
1
b−a if a ≤ x < b

0 if x < a or b ≤ x

µX =
a+ b

2

σ2
X =

(b− a)2

12
.

Definition 6.2. (Bernoulli Distribution). If X ∼ Bernoulli(p), then p is called
the success parameter and X can only take values of 0 or 1. The probabilities
are given by

P(X = x) =


1− p, if x = 0

p, if x = 1

0, otherwise.

µX = p

σ2
X = p(1− p).

Definition 6.3. (Binomial Distribution). If X ∼ Binomial(n, p), where p and
n are the probability of success and the number of trials, then

P(X = k) =

(
n

k

)
pk(1− p)n−k

µX = np

σ2
X = np(1− p).
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Definition 6.4. (Geometric Distribution). If X ∼ Geom(p), where p is the
probability of success, then

P(X = k) = (1− p)kp

µX =
p

1− p

σ2
X =

p

(1− p)2
.

Definition 6.5. (Exponential Distribution). If X ∼ Exp(λ) then we say X
has a decay rate of λ and

P(X = x+) = λe−λx

µX =
1

λ

σ2
X =

1

λ2
.

Definition 6.6. (Poisson Distribution). If X ∼ Poisson(Λ) then X is used to
describe the number of events occurring independently in a fixed amount of time
with intervals between them distributed exponentially. It is given by

P(X = k) =
Λk

k!
e−Λ

µX = Λ

σkX = Λ.

Definition 6.7. (Hypergeometric Distribution). If X ∼ Hypergeom(N,K, n),
then X is hypergeometrically distributed. The hypergeometric distribution is
useful for a population size N with K successes in it and n removed without
replacement and we want to know how likely k out of the n were successful. It
is given by

P(X = k) =

(
N
K

)(
N−K
n−k

)(
N
n

)
µX = n

K

N

σ2
X = n

K

N

N −K
N

N − n
N − 1

.

Definition 6.8. (Gaussian Distribution). If X ∼ N (µ, σ2) then it is given by

P(X = x) =
1√

2πσ2
e

−(x−µ)2

2σ2

µX = µ

σ2
X = σ2.
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7 Predictive Statistics

Definition 7.1. (Biased Estimate). µX is an unbiased estimate for E[X] if
E[µX − g(X0, . . . , Xn)] = 0, where g : Dn → R. It is biased otherwise.

Estimation of X and Y if E[X] = E[Y ] = 0. We can use the formula

X̂ = αY.

To find an optimal value for α we need to compute

min
α

E[(X − αY )2].

This gives us

α =
RXY
σ2
Y

.

where RXY = E[(X − µX)(Y − µY )].

If E[X] 6= 0 and E[Y ] 6= 0, then we need an additional bias in our estimate,

X̂ = αY + β.

Now we need to find α and β by computing

min
α,β

E[(X − (αY + β))2].

This gives us values of

α =
RXY
σ2
Y

, β = E[X]− RXY
σ2
Y

E[Y ].

The correlation coefficient for X and Y is given by

ρXY =
RXY√
σ2
Xσ

2
Y

.

If these values are unknown, then we can use E[X] ≈ µ̂X , E[Y ] ≈ µ̂Y , σ2
Y ≈ σ̂2

Y ,

and RXY ≈ R̂XY . We can define these as,

µ̂X =
1

n

∑
i

Xi

µ̂Y =
1

n

∑
i

Yi

σ̂2
Y =

1

n− 1

∑
i

(Yi − µ̂Y )2

R̂XY =
1

n− 1

∑
i

(Xi − µ̂X)(Yi − µ̂Y ).
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