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1 Probability Space

Definition 1.1. (Sample Space). The sample space Q2 of an experiment is the
set of all possible outcomes.

Definition 1.2. (Event). Given a sample space Q) we say that A is an event in
Qif ACQ.

Definition 1.3. (Event Space). An event space F over ) is a set of events in
Q satisfying the following four properties,

1. Qe F
2. Ae F = (Q\A)eF
3. e F = |J,AieF
4. Aje F = N, AieF
Since 2 € F, then we must also have @ € F. Typically we define F = 2.

Definition 1.4. (Probability Measure). Given a sample space 2 and an event
space F over Q, a probability measure P(-) is a function P : F — R with the
following two properties,

1. P(Q)=1
2. AiNAj =0 (st i#j) = P(U; 4) =2, P(A)
Definition 1.5. (Disjoint Events). Mutually exclusive events,
i#£j] = A UA; =0.

Definition 1.6. (Probability Space). A probability space is a truple (0, F,P(+))
where Q is a sample space, F is an event space over ), and P(-) is a probability
measure.



2 Counting

Definition 2.1. (Permutations). The number of permutations of an unordered
list of n elements {ag, a1,...,a,} is defined as P, where

P, =n!

Definition 2.2. (Permute k from n with repetitions). The number of ways to

choose k elements from a set of n elements where repetitions are allowed and
-—=n

order matters is defined as P, where

—-—=n

Definition 2.3. (Permute k from n with no repetitions). The number of ways
to choose k elements from a set of n elements where repetitions are not allowed
and order matters is defined as P} where

n!

b=

Definition 2.4. (Choose k from n with no repetitions). The number of ways
to choose k elements from a set of n elements where repetitions are not allowed
and order does not matter is defined as C}' where

n (M _ P n!
Ck_(k>_ kU El(n—k)

Definition 2.5. (Choose k from n with repetitions). The number of ways to
choose k elements from a set of n elements where repetitions are allowed and
order does not matter is defined as C’Z where

—n _—— k—f—?’b—l
Ck:C;j+ 1:( & )

3 Conditional Probability

Definition 3.1. (Conditional Probability). For a probability space (2, F,P(-))
and two events A and B such that P(B) # 0 we define the conditional probability
of the event A given event B as

P(AN B)

PUAIB) = ~5

Definition 3.2. (Independent Events). In a probability space (2, F,P(-))the
events Aq,..., A, are jointly independent if

P <ﬂ Al-) = IZI]P’(Ai).



Definition 3.3. (Conditional Probability of Independent Events). If events A
and B are independent, then

P(A|B) = P(A)
P(B|A) = P(B).

Definition 3.4. (Law of Total Probability). Let A and By, ..., B, be events in
the probability space (0, F,P(-)). Assume that P(B;) > 0 (Vi € N), B,NB; (Vi #
J), and |J, B; = Q. This implies

P(A) = D _P(A|B)P(B:).

Definition 3.5. (Bayes’ Theorem). Let A and B be two events in a probability
space (Q, F,P(+)). Then it follows that

P(A|B) = P(BA)E:E]‘;.

4 Random Variables

Definition 4.1. (Random Variable). In a probability space (2, F,P()), a ran-
dom wvariable X is a function from the sample space Q to a domain D, i.e.
X:Q—D. IfD=R, then we say X is a continuous random variable. Other-
wise, if D C R, then we X is a discrete random variable.

Definition 4.2. (Probability Cumulative Function). Given a random variable
X we define its Probability Cumulative Function Fx : R — D as

Fx(z) :=P(X < z).
The PCF of a random variable is a monotonic increasing function.

Definition 4.3. (PCF Over an Interval). For a random variable X and an
interval (a,b], we have

P(a < X < b) = Fx(b) — Fx(a).

Definition 4.4. (Probability Mass Function). The Probability Mass Function
of a discrete random variable X with PCF Fx(z) is given by P(X = x) such

that
Y P(X=z)=1
zeD

Definition 4.5. (Probability Density Function). The Probability Density Func-
tion of a random variable X with PCF Fx(x) is given by the function f, : R —
R* such that



The PDF has two key properties, (1) non-negativity and (2) normalization.
1. fx(z) >0 VzeR
2. [pfx(@)de=1

We can also use the properties of PMF’s and the fundamental theorem of cal-
culus to write,

b
P(a<X§b)=/ fx(x)de.

5 Expectation

Definition 5.1. (Expectation of a Discrete Random Variable). Given a discrete
random variable X with domain D and a function ¢ : D — D, we define the
expectation of ¢(X) as

E[p(X)] =Y ¢(@)P(X = z).

Definition 5.2. (Expectation of a Continuous Random Variable). Given a
continuous random variable X with PDF fx and a function ¢ : R — R we
define the expectation of p(X) as

E[o(X)] ::/ap(a:)fx(x)da:.

R

Expectation has some nice properties we can use,

E[p1(X1) + ¢2(X2)] = E[p1(X1)] + E[p2(X2)]
Elap(X)] = aE[p(X)] (Va € R).

Definition 5.3. (Moments). Given a random variable X we define its k-th
moment as E[XF¥], for k € N.

Definition 5.4. (Mean). Given a random variable X its mean, px, is defined
as its first moment, namely

Definition 5.5. (Central Moment). Given a random variable X and k € N we
define its k-th central moment as

E[(X - Nx)k]'

Definition 5.6. (Variance). Given a random variable X its variance, 0%, is
defined as the 2nd central moment. Namely,

o% = E[(X — ux)?] = E[X?] — E[X]%



Definition 5.7. (Markov Inequality). Given a random variable X such that
P(X < 0) =0, then we have

Definition 5.8. (Chebyshev Inequality). Given a random wvariable X with
E[X] = ux and variance 0%, then we have

1
P(IX — px| 2 kox) < 2 (Vk > 0).

6 Distributions

Definition 6.1. (Uniform Distribution). if X ~ U(a,b) then X takes values
uniformly on [a,b] and

1 .
P(X:.T): b—a Zfagx<b
0 ifr<aorb<c

_a+b
ux = 5

(b—a)?
0% = o

Definition 6.2. (Bernoulli Distribution). If X ~ Bernoulli(p), then p is called

the success parameter and X can only take values of 0 or 1. The probabilities
are given by

1—p, ifz=0

P(X=a)={p, ifa=1
0, otherwise.
px =P
ox =p(1—p).

Definition 6.3. (Binomial Distribution). If X ~ Binomial(n,p), where p and
n are the probability of success and the number of trials, then

n

P(X =k) = (k>p’“(1 —p)" "

fix = np
0% =np(l —p).



Definition 6.4. (Geometric Distribution). If X ~ Geom(p), where p is the
probability of success, then

2
XU —p*

Definition 6.5. (Exponential Distribution). If X ~ Exp(\) then we say X
has a decay rate of X and

0% =

Definition 6.6. (Poisson Distribution). If X ~ Poisson(A) then X is used to
describe the number of events occurring independently in o fixed amount of time
with intervals between them distributed exponentially. It is given by

P(X = k) = e
px = A
ok = A

Definition 6.7. (Hypergeometric Distribution). If X ~ Hypergeom(N, K, n),
then X 1is hypergeometrically distributed. The hypergeometric distribution is
useful for a population size N with K successes in it and n removed without
replacement and we want to know how likely k out of the n were successful. It

s given by (N) (N_K)
K)\ n—k

()
K

#X:”N
2 _ KN-KN-n

IXTUNTN N-1
Definition 6.8. (Gaussian Distribution). If X ~ N(u,0?) then it is given by

P(X =k) =

1 —(z=p)?

P(X =2) = TraQeT
Hx = H
0§< =02



7 Predictive Statistics

Definition 7.1. (Biased Estimate). upx is an unbiased estimate for E[X] if
Elpx — 9(Xo,...,Xn)] =0, where g : D™ — R. It is biased otherwise.
Estimation of X and Y if E[X] = E[Y] = 0. We can use the formula

X =aY.
To find an optimal value for o we need to compute
moinIE[(X —aY)?].
This gives us
B RXY'

=3
Oy

where Rxy = E[(X — ux)(Y — uy)].

If E[X] # 0 and E[Y] # 0, then we need an additional bias in our estimate,

X =aY + 0.
Now we need to find o and 8 by computing
minE[(X — (oY + 6))?].

a,pB

This gives us values of

o= XY 5 px) - BXvpny
Oy Oy

The correlation coefficient for X and Y is given by
ey = XY
Vokod
If these values are unknown, then we can use E[X] ~ fix, E[Y] = fiy, 0% ~ 6%,
and Rxy =~ Rxy. We can define these as,

fix Z%ZXZ'




