
Statistical Pattern Recognition Notes

Daniel Nichols

Contents

1 Overview Definitions 1
1.1 Types of Learning . 1
1.2 Types of Models . 2
1.3 Learning Philosophy . 2

2 Model Performance And Metrics 2

3 Reproducing Kernel Hilbert Spaces 3
3.1 Definitions . 3
3.2 Kernel SVM . 5
3.3 Kernel Ridge Regression . 5
3.4 Kernel PCA . 6

4 SVM 6
4.1 KKT Conditions . 7

5 K-means 8

6 Spectral Clustering 8

7 Neural Networks 9
7.1 Back-Propagation Algorithm . 10
7.2 Auto-Encoders . 10
7.3 Convolutional Layers . 10

8 Sparsity Aware Learning 11
8.1 Regression and Regularization . 11
8.2 Characterizing Sparse Solutions . 12
8.3 Orthogonal Matching Pursuit Algorithm . 13

9 Expectation Maximization 13

10 Hidden Markov Models 14
10.1 Viterbi Algorithm . 15

1 Overview Definitions

1.1 Types of Learning

Definition 1 (Supervised Learning) Statistical learning where all samples in the dataset have a known
label.

Definition 2 (Unsupervised Learning) Statistical learning where no samples in the dataset have a
known label.

1

Definition 3 (Semi-Supervised Learning) Statistical learning where some samples in the dataset have
a known label.

1.2 Types of Models

Definition 4 (Parametric Models) Model is determined by a set of parameters with size independent
of the size of the dataset.

Definition 5 (Non-Parametric Models) Model is determined by a set of parameters with size depen-
dent of the size of the dataset.

1.3 Learning Philosophy

There are always 2 big arguments in the philosophy of statistical learning and how we should go about mod-
eling prediction problems. These arguments are Discriminative vs Generative and Frequentist vs Bayesian.
To explain, consider an output y, dataset of observations X , and parameters θ.

Table 1: Approaches to Statistical Learning
Frequentist Bayesian

Discriminative p(y;X ,θ) p(y,θ;X) = p(y|θ;X)p(θ)
Generative p(y,X ;θ) p(y,X ,θ) = p(y,X|θ)p(θ)

Definition 6 (Discriminative Modeling) Assumes the final distribution of the output class is parame-
terized by a fixed and deterministic set of parameters θ.

Definition 7 (Generative Modeling) Assumes the output class’s final distribution is parameterized by a
random variable θ for which we must also model a distribution.

Definition 8 (Frequentist Approach) Only attempt to model the probability of observations given the
parameters.

Definition 9 (Bayesian Approach) Model the joint probability of both the data and parameters.

2 Model Performance And Metrics

Typically when using a machine learning model or parameter estimates it is beneficial to study how good
those estimates perform. We can do this practically (i.e. training accuracy), but we can also study the
theoretical performance of models.

Definition 10 (Mean Squared Error) Let θ̂ give a parameter estimate of the true parameter θ0. Then
the mean squared error of our parameter estimate is given by

MSE(θ̂) =E
[
(θ̂ − θ0)2

]
=E

[(
θ̂ − E[θ̂]

)2]
+
(
E[θ̂]− θ0

)2
=Var(θ̂) + Bias2(θ̂)

We know that being unbiased does not necessarily minimize the MSE of an estimator because

min
θ̂∈Rl

MSE(θ̂) ≤ min
θ̂:E[θ̂]=θ0

MSE(θ̂)

However, if we have an unbiased estimator then we do have a methodology for iteratively reducing its
MSE. To do this we need to first find a sufficient statistic for the parameter we are estimating.

2

Definition 11 (Sufficient Statistic) T (X) is a sufficient statistic of θ if P (X|T (X);θ) is independent of
θ. We can prove a statistic T (X) is sufficient by showing that P (X ;θ) can be written in the form

P (X ;θ) = h(X)g(T (X);θ)

such that h is independent of θ and g is only dependent on θ through T (X).

Now given a statistic for a parameter θ we can continually improve the MSE of an unbiased estimator θ̂
using the Rao-Blackwell Theorem.

Theorem 1 (Roa-Blackwell) If θ̂ is unbiased and T (X) is a sufficient statistic for θ, then

MSE(E[θ̂|T (X)]) ≤ MSE(θ̂)

3 Reproducing Kernel Hilbert Spaces

3.1 Definitions

Definition 12 (Hilbert Space) An inner-product space H is a Hilbert space if it is also a complete metric
space over the metric ‖x‖ =

√
〈x,x〉. An inner product space is a vector space for which an inner-product

is defined.

Definition 13 (Complete Metric Space) A space V for which every Cauchy sequence in V has a limit
in V . A sequence x1,x2, . . . is Cauchy for some metric d if for all r > 0 there exists a positive integer N
such that for all m,n > N then d(xm,xn) < r. Thus, if a space V over some metric d is complete, then all
Cauchy sequences x1,x2, . . . in V must have M = limn→∞ xn such that M ∈ V .

Definition 14 (Reproducing Kernel Hilbert Space) Let H be a Hilbert space over real-valued func-
tions defined on some arbitrary set X . The set of functions on X can be considered an inner-product space,
since we can define the inner-product of functions f(·) and g(·) as

〈f, g〉 =

√∫
X
f(x)g(x) dx.

H is a Reproducing Kernel Hilbert Space if there exists a function κ : X ×X 7→ R with the following two
properties:

1. κ(·,x) ∈ H for all x ∈ X

2. f(x) = 〈f, κ(·,x)〉H ∀f ∈ H∀x ∈ X (a.k.a. the reproducing property)

The second property and the nomenclature that κ is called a kernel gives this special space its name.

Definition 15 (Feature Map) Let H be a Reproducing Kernel Hilbert space (RKHS) associated with a
kernel κ(·, ·) and some arbitrary set X . Then the following φ(x) is a feature map to the feature space H

X 3 x 7→ φ(x) , κ(·,x) ∈ H

Notice that φ maps vectors to functions. In practice H has infinite dimension, so we are mapping points
in X from finite dimensions to the ”much higher” number of infinite dimensions.

Definition 16 (Kernel Trick) A popular trick in machine learning is to use the inner product of φ’s for
feature mapping. x,y ∈ X are mapped to infinite dimensions by φ(x) and φ(y), but their inner-product

〈φ(x), φ(y)〉H = 〈κ(·,x), κ(·,y)〉H = κ(x,y)

by the reproducing property. Thus, the infinite dimension inner-product of the mappings can be represented
by the scalar κ(x,y) ∈ R.

3

Definition 17 (Positive Definite Kernel) A kernel κ is positive definite if

N∑
n=1

N∑
m=1

anamκ(xn,xm) ≥ 0 ∀an, am ∈ R

This can also be written as aᵀKa ≥ 0 where K is a matrix such that Kij = κ(xi,xj). Thus, K must be
positive semi-definite.

Some common examples of positive definite kernels:

1. Radial Basis Function (or Gaussian): κ(x,y) = exp
(
−‖x−y‖

2
2

2σ2

)
2. Homogeneous Polynomial: κ(x,y) = (xᵀy)r

3. Inhomogeneous Polynomial: κ(x,y) = (xᵀy + c)r

4. Laplacian: κ(x,y) = exp (−t‖x− y‖)

5. Spline: κ(x,y) = B2p+1

(
‖x− y‖22

)
where Bn(·) ,

⊗n+1
i=1 χ[− 1

2 ,
1
2]

(·).

6. Sinc: κ(x,y) = sinc(x− y)

Definition 18 (Positive Definite Kernel Functions and RKHS Relationship) Every positive definite
kernel κ : X × X 7→ R defines a unique RKHS such that κ(·, ·) is a reproducing kernel. This goes both ways
as well. An RKHS is defined by a unique positive definite kernel.

Definition 19 (Representer Theorem) The main reason all this is important. Let J : H 7→ R be a
function defined by

J(f) =

N∑
n=1

L(yn, f(xn)) + λΩ(‖f‖)

where f ∈ H, Ω : [0,+∞] 7→ R is strictly monotonic increasing, and L : R2 7→ R ∪ {∞}. Then the
minimization problem

f? = argmin
f∈H

J(f)

for some θn ∈ R can be represented by the linear combination

f? =

N∑
n=1

θnκ(·,xn)

This is important because J can model the empirical loss (or risk) of a statistical prediction model. If
f(xn) makes some prediction for input xn and yn is the ground truth, then L(yn, f(xn)) can model the loss
of that classification. Ω(‖f‖) exists as a regularization term to keep the complexity of f? lower (i.e. the VC
dimension), but we can set λ = 0 to avoid this if necessary.

This is tremendously useful for machine learning. Particularly because the minimization problem minf J(f)
is very difficult. Rather than finding an optimal set of parameters as in traditional statistical models, we
are finding an optimal function, which is a difficult problem. This is made even more difficult by the fact
that H is often an infinite space. Since f? is a linear combination of kernel functions, finding the optimal f
is much easier.

4

3.2 Kernel SVM

Section 4 has a full commentary on SVMs. Consider the quadratic program from the SVM optimization
problem.

maximize

N∑
n=1

λn −
1

2

N∑
n=1

N∑
m=1

λnλmynymx
ᵀ
nxm

subject to 0 ≤ λn ≤ C
N∑
n=1

λnyn = 0

We can use the RKHS feature map x 7→ φ(x) and replace the inner produce xᵀx with

xᵀ
nxm 7→φ(xn)ᵀφ(xm)

κ(·,xn)ᵀκ(·,xm)

〈κ(·,xn), κ(·,xm)〉H
κ(xn,xm)

Thus the objective becomes

N∑
n=1

λn −
1

2

N∑
n=1

N∑
m=1

λnλmynymκ(xn,xm)

= 1ᵀλ− 1

2
λᵀ(yyᵀ)Kλ

3.3 Kernel Ridge Regression

Take the standard regression task

yn = g(xn) + ηn

where (yn,xn) ∈ R×Rl and ηn ∼ N (0, σηn) is centered noise. We want to find an optimal approximation
of g given values of xn and yn. Let f be our guess and we will assume f is in an RKHS. From the representer
theorem it follows that f can be expressed as

f(x) =

N∑
n=1

θnκ(x,xn)

If we take the error as J(θ) with regularization parameter C such that

J(θ) ,
N∑
n=1

(
yn −

N∑
m=1

θmκ(xn,xm)

)2

+ C〈f, f〉H

=(y −Kθ)ᵀ(y −Kθ) + CθᵀKᵀθ

then the optimal θ̂ is given by

(K + CI)θ̂ = y

which in turn, if κ(x) = [κ(x,x1), . . . , κ(x,xN)]ᵀ, gives the following approximation of y

ŷ = yᵀ(K + CI)−1κ(x)

5

3.4 Kernel PCA

Principal Component Analysis (PCA) is another good application of kernels. PCA is used as a change of
basis for some data X ∈ Rn×m where we have n data samples each with m features. We can change the bases
of X in a way such that the covariances between features is maximized. This gives an ideal representation of
the data. PCA is typically done by computing the principal component of each feature and projecting each
data point using these components. PCA can also be used for dimensionality reduction by only projecting
data points by the principal components corresponding to the k largest eigenvalues. Thus the data would
be reduced from n×m to n× k.

Formally, PCA finds a matrix W that transforms X with Xnew = XW . w(k), the k-th row of W , is
calculated as

w(k) = argmax
w

wᵀΣ̂kw

wᵀw

where Σ̂ = 1
N

∑N
n=1 xnx

ᵀ
n is the sample covariance (assuming X is centered). It can be shown that

XᵀX ∝ Σ̂, so we often used XᵀX in the numerator instead. Thus, if we want to reduce the data to k
dimensions, then W will be the eigenvectors corresponding to the k largest eigenvalues of XᵀX.

This, however, is a linear mapping from X to Xnew. What if such a linear data mapping is not ideal? This
seems like another great place to utilize RKHS’s and the kernel trick. First define a new sample covariance
as

Σ̂k =
1

N

N∑
n=1

φ(xn)φ(xn)ᵀ

Now it can be shown that Σ̂u = λu has eigenvectors u in the form of
∑N
n=1 anκ(·,xn) and thus

Ka = Nλa

where a = [a1, . . . , an]ᵀ and Kij = κ(xi,xj). Finally, we can project values of X using the eigenvectors
corresponding to the k largest eigenvalues of K. In practice we also typically normalize a such that 〈u,u〉H =
1.

This is a seemingly odd result. We have found better dimensionality reductions by first mapping the
data to a higher dimension and then reducing it. However, Kernel PCA outperforms traditional PCA when
a linear mapping is not possible.

4 SVM

Support vector machines try to find the optimal margin which divides linearly separable data. We can give a
loss function in terms of the hinge loss Lρ = max{0, ρ−yf(x)} where ρ is a threshold and hyper-parameter.
If we express f as some linear loss function f = 〈θ,x〉+ θ0 and notice that ‖θ‖ gives the margin size, then
the total loss becomes

J(θ, θ0) =
1

2
‖θ‖2 + C

N∑
n=1

Lρ(yn, 〈θ,x〉+ θ0)

which in turn gives us the following optimization problem

minimize
1

2
‖θ‖2 + C

N∑
n=1

ξn

subject to yn(〈θ,x〉+ θ0) ≥ ρ− ξn
ξn ≥ 0

If the data is truly linearly separable, then there will always be a subset of points such that yn(〈θ,x〉+
θ0) ≥ 1 guaranteeing that ξn = 0.

6

To select a subset of points we can optimize using the langrangian and ignore any points where the
corresponding lagrange multiplier is zero. That is θ̂ =

∑Ns

n=1 λnynxn where λn are the lagrange multipliers
and Ns is the number of non-zero multipliers. These multipliers are known as support vectors and are only
non-zero when yn(〈θ,x〉+ θ0) = 1.

We can get the bias θ0 by first computing θ̂ and then taking the average of the solutions to yn(〈θ̂,x〉+
θ0)− 1 = 0 for all xn, yn corresponding to support vectors.

Applying the langrangian and taking its dual representation gives the following optimization problem:

maximize

N∑
n=1

λn −
1

2

N∑
n=1

N∑
m=1

λnλmynym〈x,x〉

subject to 0 ≤ λn ≤ C
N∑
n=1

λnyn = 0

This is a standard quadratic program and can be solved for optimal λn giving the support vectors of the
data. Section 3.2 gives an explanation on how to use kernels in a RKHS rather than the linear f . This is
the best way to separate two classes. For M classes we can construct all

(
M
2

)
combinations of binary svm

classifiers and choose whichever class gets picked the most.

4.1 KKT Conditions

Given an optimization problem of the form:

minimize f(x)

subject to gi(x) ≤ 0 ∀i = 1, . . . ,m

hj(x) = 0 ∀j = 1, . . . , `

where x ∈ X and X is a convex subset of Rn. Let f , g, and h be continuously differentiable at x? ∈ X
and let x? be a local optimum. KKT states that given such a x?, then there exists µi (j = 1, . . . ,m) and
λj (j = 1, . . . , `) such that the following 4 conditions hold:

Stationarity

∇f(x?) +

m∑
i=1

µi∇gi(x?) +
∑̀
j=1

λj∇hj(x?) = 0

Primal Feasibility
gi(x

?) ≤ 0 ∀i = 1, . . . ,m

hj(x
?) = 0 ∀j = 1, . . . , `

Dual Feasibility
µi ≥ 0 ∀i = 1, . . . ,m

Complementary Slackness
µigi(x

?) = 0 ∀i = 1, . . . ,m

In practice this is useful because we can solve the top-most optimization problem by setting up a series
of equations and inequalities from each condition and solving for optimal µi’s and λi’s. Notice in the case
with no inequality constraints the KKT conditions give Lagrange multipliers.

7

5 K-means

Let S = {S1, . . . , Sk} be k partitions of the dataset x ∈ X . We can call each Si a cluster of the data. We
want to find a partitioning, S, such that the between-cluster variance is maximal. Letting µi be the mean
of cluster i this objective can be expressed as

S = argmin
S

k∑
i=1

∑
x∈Si

‖x− µi‖2

= argmin
S

k∑
i=1

|Si|Var[Si]

Algorithm 1: k-Means Clustering

input: Dataset X with size N
k - the number of clusters

initialize µ0, . . . ,µk to random values;
repeat

for i← to N do
assign xi the cluster Sj with nearest mean µj ;

end
for i← to k do

µi ← 1
|Si|
∑
x∈Si

x;

end

until no µi change;
Result: Clusters S1, . . . , Sk

6 Spectral Clustering

Spectral clustering is another way to look at clustering algorithms that does not necessarily use norm-based
metrics. Instead spectral clustering can use similarity measures to cluster, which lets us cluster non-euclidean
data without assigning some ill-fit norm to the data.

Let G be a graph with weighted edges. We want to find a partitioning A0, A1, . . . , Ak of V which minimizes
the weights between A’s. This can be expressed cleanly as an objective function. Let wij be the weight
between two vertices and W (A,B) =

∑
i∈Aj∈B wij the sum of weights between two sets of vertices. Then

our object function could be

f(A1, . . . , Ak) =
1

2

k∑
i=1

W (Ai, Ai)

where A is the graph complement. Minimizing f would give the desired outcome, but we have an issue
with our objective. The current function will produce lots of single vertex sets. To fix this we can ”penalize”
the objective function with the size of Ai. Instead of the size we are going to use the volume of Ai which
takes the weights into account. Let di =

∑n
j=1 wij be the degree of vertex i and vol(A) =

∑
i∈A di. Now

our objective is

f(A1, . . . , Ak) =
1

2

k∑
i=1

W (Ai, Ai)

vol(Ai)

So now we need to find A1, . . . Ak such that f is minimized. First let use define a matrix H ∈ Rn×k such
that

Hij =

{
1√

vol(Aj)
, if vi ∈ Aj

0, otherwise

8

Also define the diagonal matrix D ∈ Rn×n where D = diag(d1, . . . , dn), W ∈ Rn×n where Wij = wij ,
and the graph laplacian L = D −W .

Now we can express our minimization function as

min
A1,...,Ak

f(A1, . . . , Ak) = min
A1,...,Ak

Tr
(
HTLH

)
subject to HTDH = I

= min
T

Tr
(
TTD−1/2LD−1/2T

)
subject to TTT = I

where we substitute T = D1/2H in the last step. This is a standard trace minimization problem over
a quadratic term with an identity constraint. The solution is T such that T contains the k eigenvectors of
D−1/2LD−1/2 corresponding to the k largest eigenvalues.

We can now assign vertices to clusters by using the k-means clustering algorithm on the rows of T . Now
vertex i is in a cluster with vertex j if rows i and j of T are assigned to the same cluster.

This algorithm works for clustering on more than graphs. For instance, any coordinate data can by
represented by a fully connected graph with the edge between each point as some scaled distance function.
An example is the radial basis function,

RBF (xi,xj) = exp

(
−‖xi − xj‖22

2σ2

)
You can also use any other similarity metric, such as Hamming distance for strings.

7 Neural Networks

A neural network is a series of layers with multiple neurons. Each neuron in a layer is connected to every
neuron in the next layer (excluding the last one). Each connection has a weight associated with it which
produces the output of the proceeding neuron.

For example let y
(r)
i give the output of neuron i in the r-th layer. We want to calculate the value of

neuron i in layer r+ 1. This is the sum of all the weights along each edge multiplied by their corresponding

neuron. If θ
(r)
ji gives the weight from neuron j in layer r to neuron i in layer r+ 1, then the value for y

(r+1)
i

can be calculated as

z
(r+1)
i =θn0 +

∑̀
n=1

θ
(r)
ni y

(r)
n

=⇒ y
(r+1)
i =f(zi)

This can be vectorized as z
(r+1)
i = θ

(r)
i

ᵀ
y(r) and z(r) = [z

(r)
1 , . . . , z

(r)
`]ᵀ. Likewise if we put all the θ

vectors into the matrix Θ(r) = [θ
(r)
1 , . . . ,θ

(r)
`]ᵀ, then the update becomes

z(r+1) =Θ(r)y(r)

=⇒ y(r+1) =f(z(r+1))

Here f is some activation function, which often differs between layers. Common examples are tanh,
ReLU, sigmoid, and softmax.

Definition 20 (Universal Approximation Theorem) Let g : S 7→ R be a continuous function with
S ⊂ Rl being compact. Let ĝ be the output of a two layer neural network with a sigmoidal activation function
f . Then for any ε > 0 there exists a ĝ with Kε hidden nodes such that

|g(x)− ĝ(x)| < ε, ∀x ∈ S

Thus a two layer fully connected network can hypothetically approximate any real valued function for
some number of hidden units dependent on the error magnitude.

9

7.1 Back-Propagation Algorithm

Now the network can make predictions, but it needs to train to find the optimal Θ(r) for each layer. To train
we first need to define an objective function to optimize. Let f(x;θ) be the output of the neural network
parameterized by θ.

J(θ) =
1

N

N∑
n=1

L(yn, f(x;θ))

Here L : R2 7→ R is the loss of the network. Some example loss functions include the squared error
(L(y, ŷ) = |y − ŷ|2) and categorical crossentropy (L(y, ŷ) = y log ŷ + (1− y) log(1− ŷ)). Since J(θ) gives
the average loss for N samples and parameters θ, then we can find optimal parameters by minimizing J
with respect to θ. This can be done with a simple gradient descent based schema.

θi+1 ← θi −∇θJ(θi)

Computing ∇θJ is non-trivial since there are separate θ in each layer of the network, but can be done
with the back-propagation algorithm making use of the chain rule.

The computation of the output layer is straightforward. Let δ
(r)
nj denote the gradient for input sample n

and neuron j in layer r. Then the output layer (layer L) is given by

δ
(L)
nj =

∂Jn

∂z
(L)
nj

Computing the gradients before the output layer requires the use of the chain rule. Consider the general
form

δ
(r−1)
nj =

∂Jn

∂z
(r−1)
nj

=
∑̀
k=1

∂Jn

∂z
(r)
nk

∂z
(r)
nk

∂z
(r−1)
nj

And we know that z
(r)
nk is given by

`−1∑
m=1

θ
(r)
kmf(z(r−1)nm)

which means our gradient computation for each neuron is

δ
(r−1)
nj =

(∑̀
k=1

δ
(r)
nk θ

(r)
kj

)
f ′(z

(r−1)
nj)

Thus, we can compute the gradients for neurons in layer r using only the values of its weights, the
derivative of its output, and the gradients from layer r + 1. Since the last layers has easy to compute
gradients, then we can start at the back and compute gradients from the last layer to the first. This is where
the name back-propagation comes from.

7.2 Auto-Encoders

7.3 Convolutional Layers

For learning data with lots of features it is often desirable to reduce the number of features by finding and
using only the ”meaningful” ones. This is often done before the learning using something like PCA or LDA
on the data. However, CNNs attempt to integrate the feature selection with the learning algorithm.

To accomplish this we can replace the inner-product in fully connected layers with a convolution operation.
Likewise we emply weight sharing. In a FC network each neuron has a vector of parameters associated with
it. In a convolution schema we limit each neuron to a single parameter, which is in turn calculated using a
convolution over the layer’s input space.

10

In the context of image learning these weights are typically arranged in a filter (or set of filters), which
are applied to the image using discrete convolutions. When the filter is applied to an image the output
matrix is a feature map. During training we seek to find the optimal set of filter parameters.

8 Sparsity Aware Learning

Sometimes we have data with lots of features, but only a small subset of those features matter for prediction
and/or classification. One way to approach this problem is to use data reduction techniques such as PCA
or LDA. Another way is to use sparsity-aware models, which learn sparse solutions in the feature space.

Definition 21 (`p Norm) Let the `p norm of a vector x ∈ Rd for p > 1 be given by

‖x‖p ,

(
d∑
i=1

|xi|p
)1/p

Here p = 2 is the standard euclidean distance norm. We can also define some special cases for p = 0,
p = 1, and as p→∞.

‖x‖0 = lim
p→0

d∑
i=1

|xi|p =

d∑
i=1

χ(0,∞)(|xi|)

‖x‖1 =

d∑
i=1

|xi|

‖x‖∞ = lim
p→∞

(
d∑
i=1

|xi|p
)1/p

= max
i
{|xi|}

Note here that the `0 norm is the number of non-zero elements in the vector, the `1 norm is the sum of
the absolute value of the elements, and the `∞ norm is the maximum of the absolute value of the vector’s
elements. While, in a theoretical sense, none of these are norms they are still very useful.

8.1 Regression and Regularization

In normal regularized regression we try to find

min
θ

N∑
i=1

(yn − xᵀ
nθ)

2
+ λ‖θ‖22

Here the λ‖θ‖22 regularizes the solution by penalizing large θ norms. We can try replacing this with ‖θ‖0
or ‖θ‖1 to penalize the number of parameters in θ at all. This seems nice, but a problem arises in that
‖θ‖0 is not differentiable. Similarly ‖θ‖1 is not differentiable where θi = 0, since it is the absolute value.
However, we can remedy this, since it is only non-differentiable at a finite number of points. We can use a
sub-differential form of the KKT conditions from Section 4.1. So now we want to find

θ̂ = argmin
θ

N∑
i=1

(yn − xᵀ
nθ)

2
+ λ‖θ‖1

= argmin
θ

(y −Xθ)ᵀ(y −Xθ) + λ‖θ‖1

which we can solve use gradient based methods

−2Xᵀy + 2XᵀXθ̂ + λ∇θ‖θ‖1 = 0

where

11

∂|θ| =

1, if θ > 0

−1, if θ < 0

[−1, 1], if θ = 0

Consider the case where the regressors are mutually orthogonal and of unit norm. Then XᵀX = I
and the solution to standard unregularized least squares is θ̂LS = (XᵀX)−1Xᵀy = Xᵀy. Additionally, the

regularized least squares solution with the `2 norm becomes θ̂R = 1
1+λ θ̂LS. Using these values we find that

the `1 norm regularization has optimal solutions

θ̂i = sgn(θ̂LS,i)

(
|θ̂LS,i| −

λ

2

)
+

where (x)+ , max(x, 0). This solution is ideal, but the assumption that XᵀX = I is very ambitious.
Let X ∈ RN×`. If N > ` and X is full rank, then we can achieve XᵀX = I with a finite sequence of linear
transformations on X. However, if N < ` (we have more features than observations), then the problem is
underdetermined as rank(X) ≤ N , while rank(I`) = `.

8.2 Characterizing Sparse Solutions

Finding the sparsest solution to a linear problem can be framed as

min
θ

‖θ‖0

subject to Xθ = y

We want to determine if there is a unique solution and, if so, how to find it.

Definition 22 (Matrix Spark) The spark of a matrix X ∈ RN×` where ` ≥ N is the minimum number
of its linearly dependent columns.

Based on this definition if we pick any m columns of X such that m < spark(X), then these columns are
linearly independent. Also given this notion of spark we can prove two very important lemmas.

Lemma 1 If θ ∈ null(X) and θ 6= 0 then

‖θ‖0 ≥ spark(X)

Lemma 2 If the linear system Xθ = y has a solution θ? such that

‖θ?‖0 <
1

2
spark(X)

then θ? is the sparsest solution and is unique.

These bounds are very helpful, but computing spark(X) is very difficult as it is combinatorial in the
number of columns of X. So to help we define a new value which can bound the spark and is a lot easier to
compute.

Definition 23 (Mutual Coherence) Let X ∈ RN×`. Then the mutual coherence of X is defined as

µ(X) , max
1≤i<j≤`

|xcᵀi xcj |
‖xci‖‖xcj‖

Note that µ(X) gives the maximum absolute value of the cross-correlations between columns of X. This
value becomes very useful due to the following lemma

Lemma 3 For any X ∈ RN×`,

spark(X) ≥ 1 +
1

µ(X)

12

From this we can show that

‖θ‖0 <
1

2

(
1 +

1

µ(X)

)
Now we have a bound on the `0 norm which does not involve computing the spark. In fact this fact leads

to an even more interesting result involving the `1 norm.

Lemma 4 Let y = Xθ be an underdetermined system. That is X ∈ RN×`, N < `, and X is full row rank.
If a solution θ? exists and

‖θ?‖0 <
1

2

(
1 +

1

µ(X)

)
then θ? minimizes the `0 and `1 norms.

This is an immense result as minimizing the `0 norm is very difficult, however, minimizing the `1 norm
can be done using linear programs. Linear programming is well studied and lots of optimal solutions are
known. Since the solutions are the same, then we can just solve the `1 norm mimimizer.

8.3 Orthogonal Matching Pursuit Algorithm

While linear programming is very helpful in finding the `1 solution we can in fact do it faster using the
greedy Orthogonal Matching Pursuit algorithm.

Algorithm 2: Orthogonal Matching Pursuit

input: Dataset X ∈ RN×` with size xj as the j-th column
initialize θ(0) = 0, r(0) = y, S(0) = ∅, and m = 1
repeat

m← m+ 1 ;

jm ← argmaxj |X
ᵀ
j r

(m−1)| ;

S(m) ← S(m−1) ∪ {jm};
θ(m) ← argminθ‖y −

∑
i∈S(m) Xiθi‖22;

r(m) ← y −Xθ(m);

until r(m) = 0;

Result: Sparse θ(m)

This algorithm recursively selects columns of X which are are supports. At any iteration S(m) holds the
indices of the support columns of X. After finding support columns the algorithm solves the least squares
problem with just the support columns ofX to get the optimal value of θ corresponding to that column. In the

ideal case y is always orthogonal to the columns of X not in S. This only occurs when ‖θ‖0 < 1
2

(
1 + 1

µ(X)

)
.

More generally y always forms sufficiently small angles with the non-support columns. In this case the
algorithm terminates when ‖r(m)‖2 < ε for some small ε > 0.

9 Expectation Maximization

If we have p(y|θ) and p(θ) from a regression task and we want to find a distribution for p(y) parameterized
by non-random ξ. This is the maximum likelihood problem of maximizing p(y; ξ). However, a closed form
for this is usually impossible. This is due to the fact that we have two random variables: θ and y. If θ were
known, then we could maximize p(y,θ; ξ), but θ is often unknown. This is called a hidden variable. We can
use the expectation maximizing algorithm to solve these problems with hidden variables.

Let x be a random vector and X the corresponding set of observations. Now let X l = {xl1, . . . ,xlN} be the
corresponding set of latent variables. Even thought X l cannot be observed assume that we know p(X l|X ; ξ).
We want to find p(X ,X l; ξ), however, we cannot since we have no observations for X l. Because maximizing
the expectation of the log-likelihood (in this case) is equivalent to maximizing the evidence function p(X ; ξ)
the EM algorithm maximizes this expectation using an iterative procedure.

13

Algorithm 3: Expectation Maximization

input: Some ε > 0
initialize ξ(0) to some arbitrary value and j = 0
repeat

Compute p(X l|X ; ξ(j));

Compute Q(ξ|ξ(j)) = Ep(X l|X ;ξ(j))

[
ln p(X ,X l; ξ)

]
;

ξ(j+1) ← argmaxξQ(ξ, ξ(j))

j ← j + 1;

until ‖ξ(j+1) − ξ(j)‖ < ε;
Result: ξ

10 Hidden Markov Models

Hidden Markov Models are used on data where observations are not independent. Typically this is rep-
resented by a set of states and observations at the corresponding states with the probability of transition
between different states.

Let aij be the probability to transition from state i to state j. Let A be a matrix such that Aij = aij .

Here we make a homogeneity assumption such that aij ≥ 0 and
∑N
i=1 aij = 1. Let {v1, . . . , vM} be a set of

observations such that bj(k) is the probability of observing vk on state j. Additionally, let B be a matrix
such that Bij = bj(j). Finally let the initially probability of state i be given by πi.

Given parameters λ = (A,B,π) and a sequence of observations O = {O1, O2, . . . , OT } how can we
compute the likelihood P (O|λ)? Additionally, what is the optimal sequence of states q1, q2, . . . , qT ? Finally,
if we only have O, then how can we estimate λ? We can write an expression for the first question as

P (O|λ) =
∑
all Q

P (O|Q,λ)P (Q,λ)

where ”all Q” denotes all possible sequences of transitions Q. We can show that

P (O|Q,λ) =

T∏
t=1

P (Ot|qt, λ)

=b1(O1) · b2(O2) · · · bT (OT)

and

P (Q|λ) = π1a12a23 · · · aT−1,T
Thus computing P (O|λ) will take ≈ 2T · NT calculations for N states and T observations. One can

quickly see that for even small problems such as N = 5 and T = 100 we need to do almost 1072 calculations,
which is not feasible. Luckily there is a smarter way to approach the problem by factoring out values from
this ginormous sum.

We want to define a sequence αt(i) = P (O1O2 · · ·Ot, i|λ) and compute these partial probabilities using
forward substitution.

Initially, let

α1(i) = πibi(O1)

Next compute each α inductively as

αt+1(j) =

[
N∑
i=1

αt(i)aij

]
bj(Ot+1)

for all 1 ≤ t ≤ T − 1. Finally, we can compute the total probability as

14

P (O|λ) =

N∑
i=1

αT (i)

We can also consider a backwards pass over the data defining βt(i) = P (Ot+1Ot+2 · · ·OT |i, λ), which
gives the probability of the partial observations from t to the end. This can be solved similarly to α by first
assigning

βT (i) = 1

and then repeatedly computing βt as

βt(i) =

N∑
j=1

aijbj(Ot+1)βt+1(j)

10.1 Viterbi Algorithm

Now we want to address the second problem. Given some sequence of observations and parameters how do
we determine what the ”optimal” set of sequences is? First let γt(i) be the probability of being in state i at
time t given O and λ. This can be simply expressed as

γt(i) =
αt(i)βt(i)∑N
i=1 αt(i)βt(i)

Now we want to find the most likely state at time t, which is given by argmaxi γt(i).
This approach is near optimal, but has some problems. It only considers the most likely state at a single

time point, but does not consider sequences of states. To solve this problem let us introduce the Viterbi
Algorithm.

First let

δ1(i) =πibi(O1)

ψ1(i) =0

Then define an iterative step

δt(i) = max
i
δt−1(i)aijbj(Ot)

ψt(i) = argmax
i

δt−1(i)aij

The algorithm terminates with

P ? = max
i
δT (i)

q?T = argmax
i

δT (i)

Finally we choose the optimal sequence as

q?t = ψt+1(q?t+1)

15

