Random Variables Notes

Daniel Nichols

December 2018

1 Probability Space

Definition 1.1. (Sample Space). The sample space Ω of an experiment is the set of all possible outcomes.

Definition 1.2. (Event). Given a sample space Ω we say that A is an event in Ω if $A \subseteq \Omega$.

Definition 1.3. (Event Space). An event space \mathcal{F} over Ω is a set of events in Ω satisfying the following four properties,

1. $\Omega \in \mathcal{F}$
2. $A \in \mathcal{F} \Longrightarrow(\Omega \backslash A) \in \mathcal{F}$
3. $A_{i} \in \mathcal{F} \Longrightarrow \bigcup_{i} A_{i} \in \mathcal{F}$
4. $A_{i} \in \mathcal{F} \Longrightarrow \bigcap_{i} A_{i} \in \mathcal{F}$

Since $\Omega \in \mathcal{F}$, then we must also have $\varnothing \in \mathcal{F}$. Typically we define $\mathcal{F}=2^{\Omega}$.
Definition 1.4. (Probability Measure). Given a sample space Ω and an event space \mathcal{F} over Ω, a probability measure $\mathbb{P}(\cdot)$ is a function $\mathbb{P}: \mathcal{F} \rightarrow \mathbb{R}^{+}$with the following two properties,

1. $\mathbb{P}(\Omega)=1$
2. $A_{i} \cap A_{j}=\varnothing($ s.t. $i \neq j) \Longrightarrow \mathbb{P}\left(\bigcup_{i} A_{i}\right)=\sum_{i} \mathbb{P}\left(A_{i}\right)$

Definition 1.5. (Disjoint Events). Mutually exclusive events,

$$
i \neq j \Longrightarrow A_{i} \cup A_{j}=\varnothing
$$

Definition 1.6. (Probability Space). A probability space is a truple $(\Omega, \mathcal{F}, \mathbb{P}(\cdot))$ where Ω is a sample space, \mathcal{F} is an event space over Ω, and $\mathbb{P}(\cdot)$ is a probability measure.

2 Counting

Definition 2.1. (Permutations). The number of permutations of an unordered list of n elements $\left\{a_{0}, a_{1}, \ldots, a_{n}\right\}$ is defined as P_{n} where

$$
P_{n}=n!
$$

Definition 2.2. (Permute k from n with repetitions). The number of ways to choose k elements from a set of n elements where repetitions are allowed and order matters is defined as \bar{P}_{k}^{n} where

$$
\bar{P}_{k}^{n}=n^{k} .
$$

Definition 2.3. (Permute k from n with no repetitions). The number of ways to choose k elements from a set of n elements where repetitions are not allowed and order matters is defined as P_{k}^{n} where

$$
P_{k}^{n}=\frac{n!}{(n-k)!}
$$

Definition 2.4. (Choose k from n with no repetitions). The number of ways to choose k elements from a set of n elements where repetitions are not allowed and order does not matter is defined as C_{k}^{n} where

$$
C_{k}^{n}=\binom{n}{k}=\frac{P_{k}^{n}}{k!}=\frac{n!}{k!(n-k)!} .
$$

Definition 2.5. (Choose k from n with repetitions). The number of ways to choose k elements from a set of n elements where repetitions are allowed and order does not matter is defined as \bar{C}_{k}^{n} where

$$
\bar{C}_{k}^{n}=C_{k}^{k+n-1}=\binom{k+n-1}{k} .
$$

3 Conditional Probability

Definition 3.1. (Conditional Probability). For a probability space $(\Omega, \mathcal{F}, \mathbb{P}(\cdot))$ and two events A and B such that $\mathbb{P}(B) \neq 0$ we define the conditional probability of the event A given event B as

$$
\mathbb{P}(A \mid B)=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}
$$

Definition 3.2. (Independent Events). In a probability space $(\Omega, \mathcal{F}, \mathbb{P}(\cdot))$ the events A_{1}, \ldots, A_{n} are jointly independent if

$$
\mathbb{P}\left(\bigcap_{i} A_{i}\right)=\prod_{i} \mathbb{P}\left(A_{i}\right)
$$

Definition 3.3. (Conditional Probability of Independent Events). If events A and B are independent, then

$$
\begin{aligned}
\mathbb{P}(A \mid B) & =\mathbb{P}(A) \\
\mathbb{P}(B \mid A) & =\mathbb{P}(B) .
\end{aligned}
$$

Definition 3.4. (Law of Total Probability). Let A and B_{1}, \ldots, B_{n} be events in the probability space $(\Omega, \mathcal{F}, \mathbb{P}(\cdot))$. Assume that $\mathbb{P}\left(B_{i}\right)>0(\forall i \in \mathbb{N})$, $B_{i} \cap B_{j}(\forall i \neq$ $j)$, and $\bigcup_{i} B_{i}=\Omega$. This implies

$$
\mathbb{P}(A)=\sum_{i} \mathbb{P}\left(A \mid B_{i}\right) \mathbb{P}\left(B_{i}\right) .
$$

Definition 3.5. (Bayes' Theorem). Let A and B be two events in a probability space $(\Omega, \mathcal{F}, \mathbb{P}(\cdot))$. Then it follows that

$$
\mathbb{P}(A \mid B)=\mathbb{P}(B \mid A) \frac{\mathbb{P}(A)}{\mathbb{P}(B)}
$$

4 Random Variables

Definition 4.1. (Random Variable). In a probability space $(\Omega, \mathcal{F}, \mathbb{P}(\cdot))$, a random variable X is a function from the sample space Ω to a domain \mathbb{D}, i.e. $X: \Omega \rightarrow \mathbb{D}$. If $\mathbb{D}=\mathbb{R}$, then we say X is a continuous random variable. Otherwise, if $\mathbb{D} \subset \mathbb{R}$, then we X is a discrete random variable.

Definition 4.2. (Probability Cumulative Function). Given a random variable X we define its Probability Cumulative Function $F_{X}: \mathbb{R} \rightarrow \mathbb{D}$ as

$$
F_{X}(x):=\mathbb{P}(X \leq x)
$$

The PCF of a random variable is a monotonic increasing function.
Definition 4.3. (PCF Over an Interval). For a random variable X and an interval (a, b], we have

$$
\mathbb{P}(a<X \leq b)=F_{X}(b)-F_{X}(a)
$$

Definition 4.4. (Probability Mass Function). The Probability Mass Function of a discrete random variable X with $P C F F_{X}(x)$ is given by $\mathbb{P}(X=x)$ such that

$$
\sum_{x \in \mathbb{D}} \mathbb{P}(X=x)=1
$$

Definition 4.5. (Probability Density Function). The Probability Density Function of a random variable X with $P C F F_{X}(x)$ is given by the function $f_{x}: \mathbb{R} \rightarrow$ \mathbb{R}^{+}such that

$$
f_{x}(x)=\frac{d}{d x} F_{X}(x)
$$

The PDF has two key properties, (1) non-negativity and (2) normalization.

1. $f_{X}(x) \geq 0 \quad \forall x \in \mathbb{R}$
2. $\int_{\mathbb{R}} f_{X}(x) d x=1$

We can also use the properties of PMF's and the fundamental theorem of calculus to write,

$$
\mathbb{P}(a<X \leq b)=\int_{a}^{b} f_{X}(x) d x
$$

5 Expectation

Definition 5.1. (Expectation of a Discrete Random Variable). Given a discrete random variable X with domain \mathbb{D} and a function $\varphi: \mathbb{D} \rightarrow \mathbb{D}$, we define the expectation of $\varphi(X)$ as

$$
\mathbb{E}[\varphi(X)]:=\sum_{x \in \mathbb{D}} \varphi(x) \mathbb{P}(X=x)
$$

Definition 5.2. (Expectation of a Continuous Random Variable). Given a continuous random variable X with $P D F f_{X}$ and a function $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ we define the expectation of $\varphi(X)$ as

$$
\mathbb{E}[\varphi(X)]:=\int_{\mathbb{R}} \varphi(x) f_{X}(x) d x
$$

Expectation has some nice properties we can use,

$$
\begin{gathered}
\mathbb{E}\left[\varphi_{1}\left(X_{1}\right)+\varphi_{2}\left(X_{2}\right)\right]=\mathbb{E}\left[\varphi_{1}\left(X_{1}\right)\right]+\mathbb{E}\left[\varphi_{2}\left(X_{2}\right)\right] \\
\mathbb{E}[\alpha \varphi(X)]=\alpha \mathbb{E}[\varphi(X)] \quad(\forall \alpha \in \mathbb{R}) .
\end{gathered}
$$

Definition 5.3. (Moments). Given a random variable X we define its k-th moment as $\mathbb{E}\left[X^{k}\right]$, for $k \in \mathbb{N}$.

Definition 5.4. (Mean). Given a random variable X its mean, μ_{X}, is defined as its first moment, namely

$$
\mu_{X}:=\mathbb{E}[X] .
$$

Definition 5.5. (Central Moment). Given a random variable X and $k \in \mathbb{N}$ we define its k-th central moment as

$$
\mathbb{E}\left[\left(X-\mu_{X}\right)^{k}\right] .
$$

Definition 5.6. (Variance). Given a random variable X its variance, σ_{X}^{2}, is defined as the 2nd central moment. Namely,

$$
\sigma_{X}^{2}=\mathbb{E}\left[\left(X-\mu_{X}\right)^{2}\right]=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}
$$

Definition 5.7. (Markov Inequality). Given a random variable X such that $\mathbb{P}(X<0)=0$, then we have

$$
\mathbb{P}(X \geq k) \leq \frac{\mathbb{E}[X]}{k} \quad(\forall k>0)
$$

Definition 5.8. (Chebyshev Inequality). Given a random variable X with $\mathbb{E}[X]=\mu_{X}$ and variance σ_{X}^{2}, then we have

$$
\mathbb{P}\left(\left|X-\mu_{X}\right| \geq k \sigma_{X}\right) \leq \frac{1}{k^{2}} \quad(\forall k>0)
$$

6 Distributions

Definition 6.1. (Uniform Distribution). if $X \sim \mathcal{U}(a, b)$ then X takes values uniformly on $[a, b]$ and

$$
\begin{gathered}
\mathbb{P}(X=x)= \begin{cases}\frac{1}{b-a} & \text { if } a \leq x<b \\
0 & \text { if } x<a \text { or } b \leq x\end{cases} \\
\mu_{X}=\frac{a+b}{2} \\
\sigma_{X}^{2}=\frac{(b-a)^{2}}{12} .
\end{gathered}
$$

Definition 6.2. (Bernoulli Distribution). If $X \sim \operatorname{Bernoulli}(p)$, then p is called the success parameter and X can only take values of 0 or 1 . The probabilities are given by

$$
\begin{gathered}
\mathbb{P}(X=x)= \begin{cases}1-p, & \text { if } x=0 \\
p, & \text { if } x=1 \\
0, & \text { otherwise } .\end{cases} \\
\mu_{X}=p \\
\sigma_{X}^{2}=p(1-p) .
\end{gathered}
$$

Definition 6.3. (Binomial Distribution). If $X \sim \operatorname{Binomial}(n, p)$, where p and n are the probability of success and the number of trials, then

$$
\begin{gathered}
\mathbb{P}(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k} \\
\mu_{X}=n p \\
\sigma_{X}^{2}=n p(1-p)
\end{gathered}
$$

Definition 6.4. (Geometric Distribution). If $X \sim \operatorname{Geom}(p)$, where p is the probability of success, then

$$
\begin{gathered}
\mathbb{P}(X=k)=(1-p)^{k} p \\
\mu_{X}=\frac{p}{1-p} \\
\sigma_{X}^{2}=\frac{p}{(1-p)^{2}} .
\end{gathered}
$$

Definition 6.5. (Exponential Distribution). If $X \sim \operatorname{Exp}(\lambda)$ then we say X has a decay rate of λ and

$$
\begin{gathered}
\mathbb{P}\left(X=x^{+}\right)=\lambda e^{-\lambda x} \\
\mu_{X}=\frac{1}{\lambda} \\
\sigma_{X}^{2}=\frac{1}{\lambda^{2}}
\end{gathered}
$$

Definition 6.6. (Poisson Distribution). If $X \sim \operatorname{Poisson}(\Lambda)$ then X is used to describe the number of events occurring independently in a fixed amount of time with intervals between them distributed exponentially. It is given by

$$
\begin{gathered}
\mathbb{P}(X=k)=\frac{\Lambda^{k}}{k!} e^{-\Lambda} \\
\mu_{X}=\Lambda \\
\sigma_{X}^{k}=\Lambda
\end{gathered}
$$

Definition 6.7. (Hypergeometric Distribution). If $X \sim \operatorname{Hypergeom}(N, K, n)$, then X is hypergeometrically distributed. The hypergeometric distribution is useful for a population size N with K successes in it and n removed without replacement and we want to know how likely k out of the n were successful. It is given by

$$
\begin{aligned}
& \mathbb{P}(X=k)=\frac{\binom{N}{K}\binom{N-K}{n-k}}{\binom{N}{n}} \\
& \mu_{X}=n \frac{K}{N} \\
& \sigma_{X}^{2}=n \frac{K}{N} \frac{N-K}{N} \frac{N-n}{N-1} .
\end{aligned}
$$

Definition 6.8. (Gaussian Distribution). If $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ then it is given by

$$
\begin{gathered}
\mathbb{P}(X=x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{\frac{-(x-\mu)^{2}}{2 \sigma^{2}}} \\
\mu_{X}=\mu \\
\sigma_{X}^{2}=\sigma^{2}
\end{gathered}
$$

7 Predictive Statistics

Definition 7.1. (Biased Estimate). μ_{X} is an unbiased estimate for $\mathbb{E}[X]$ if $\mathbb{E}\left[\mu_{X}-g\left(X_{0}, \ldots, X_{n}\right)\right]=0$, where $g: \mathbb{D}^{n} \rightarrow \mathbb{R}$. It is biased otherwise.

Estimation of X and Y if $\mathbb{E}[X]=\mathbb{E}[Y]=0$. We can use the formula

$$
\hat{X}=\alpha Y
$$

To find an optimal value for α we need to compute

$$
\min _{\alpha} \mathbb{E}\left[(X-\alpha Y)^{2}\right]
$$

This gives us

$$
\alpha=\frac{R_{X Y}}{\sigma_{Y}^{2}} .
$$

where $R_{X Y}=\mathbb{E}\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]$.
If $\mathbb{E}[X] \neq 0$ and $\mathbb{E}[Y] \neq 0$, then we need an additional bias in our estimate,

$$
\hat{X}=\alpha Y+\beta
$$

Now we need to find α and β by computing

$$
\min _{\alpha, \beta} \mathbb{E}\left[(X-(\alpha Y+\beta))^{2}\right] .
$$

This gives us values of

$$
\alpha=\frac{R_{X Y}}{\sigma_{Y}^{2}}, \quad \beta=\mathbb{E}[X]-\frac{R_{X Y}}{\sigma_{Y}^{2}} \mathbb{E}[Y] .
$$

The correlation coefficient for X and Y is given by

$$
\rho_{X Y}=\frac{R_{X Y}}{\sqrt{\sigma_{X}^{2} \sigma_{Y}^{2}}}
$$

If these values are unknown, then we can use $\mathbb{E}[X] \approx \hat{\mu}_{X}, \mathbb{E}[Y] \approx \hat{\mu}_{Y}, \sigma_{Y}^{2} \approx \hat{\sigma}_{Y}^{2}$, and $R_{X Y} \approx \hat{R}_{X Y}$. We can define these as,

$$
\begin{aligned}
\hat{\mu}_{X} & =\frac{1}{n} \sum_{i} X_{i} \\
\hat{\mu}_{Y} & =\frac{1}{n} \sum_{i} Y_{i} \\
\hat{\sigma}_{Y}^{2} & =\frac{1}{n-1} \sum_{i}\left(Y_{i}-\hat{\mu}_{Y}\right)^{2} \\
\hat{R}_{X Y} & =\frac{1}{n-1} \sum_{i}\left(X_{i}-\hat{\mu}_{X}\right)\left(Y_{i}-\hat{\mu}_{Y}\right) .
\end{aligned}
$$

